Single-Shell Tank Waste Stability

D. D. Wodrich

9 | | 2 | 5 2 | 3 7 0

Single-Shell Tank (SST) Waste Stability

<u>Agenda</u>

- Processes that generated chemicals contained in Hanford Site SSTs
- Major chemicals of concern
- Potential reactions of concern
- Studies to evaluate explosion potential
- Kyshtym explosion
- Relevance of Kyshtym to Hanford Site SST Waste
- Summary and Conclusions

Hanford Site Processes Primary Recovery Process

Process	MTHM* Total	Operating Period					
	Fuel Processed	1940s	1950s	1960s	1970s	1980s	
Bismuth Phosphate		12/44	2/56				
REDOX	19,000		1/52	8/66			
PUREX	75,000		1/56	<u> </u>	71	11/83	
Total	101,000	1111			; ;	1111111	

^{*}Metric tons of heavy metal

Hanford Site Processes Waste Generator

9 1 1 2 1 5 7 1 7 7 3

Hanford Site Processes Secondary Recovery Process

Process		Operating Period				
	1940s	1950s	1960s	1970s	1980s	
Uranium Recovery		1/45 8/56				
Cesium Recovery			8/67	4/76		
Strontium Recovery				1/69 6/78		
Cesium Encapsulation				1/74	10/83	
Strontium Encapsulation	3111	11111111		11/73	-> 1/85 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Hanford Site Processes Waste Management Process

Process	Operating Period					
	1940s	1950s	1960s	1970s	1980s	
•				1111111		
Cascade	1/45 8/56					
•		9/54 5/57				
Scavenge		19 0				
;		4/52 7/55			•	
Evaporation		1702 7700	12/65	4/76	,	
*						
In-Tank			3/65	6/76		
Solidification						
Evaporation-				11/73 🗀 🗀	ang taon da da jirin sa sa	
Crystallization					A Table 1	
Crystallization			11111111			

9 1 1 2 3 5 2 1 3 7 5

Major Chemicals of Concern

Bismuth Phosphate, REDOX, and PUREX

Classification

Ammonium Nitrate

Explosive

Organics Used (and Breakdown Products)

Reductants

Inorganic Nitrates and Nitrites

Oxidizers

9 1 1 2 1 5 2 1 7 7 6

Major Chemicals of Concern (cont)

Other Sources: Uranium and plutonium recovery, N Reactor operations, laboratories, waste fractionation and encapsulation, equipment decontamination, and waste scavenging

- Chemicals of concern--same as previous processes but in smaller amounts
- Exception--large amount of ferrocyanide (FeCN) used during scavenging process (22 tanks)

Potential Reactions of Concern

Ammonium nitrate explosion

All ammonium nitrate in waste destroyed because NH₄NO₃ + NaOH → NaNO₃ + H₂O + NH₃ ↑

Reduction-oxidation reactions

Studies to Evaluate Explosion Potential

	<u>Event</u>	<u>Year</u>
•	Kyshtym Accident	1957
•	Kyshtym Accident First Revealed	1973
•	Nitrate and Organics Used (Rockwell Hanford Operations/ Hazards Research Institute [HRI])	1973-1977
•	Literature Review of FeCN Potential (Pacific Northwest Laboratory [PNL])	1983-1984
•	Literature Review of Organics Potential (PNL)	1985
•	Laboratory Test of FeCN Potential (PNL)	1988-1990
•	Kyshtym Accident Officially Confirmed	1989
•	Evaluation of Kyshtym Event, and Relevance to Hanford Site Tanks (Westinghouse Hanford)	1989-1990

91123531779

Studies to Evaluate Explosion Potential Completed Studies

Sodium Nitrate (NaNO₃) (Saltcake) and Organics

- Evaluation by HRI (1973-1977)
 - Laboratory studies on mixtures of sodium nitrate, saltcake, and major organic chemicals used at the Hanford Site
 - Reports issued in 1976 and 1977
- Conclusion
 - These mixtures are stable at temperatures below 480 °F. Current maximum reading in S\$Ts is approximately 230 °F.

9112 5 7 7 1 3 1 0

Studies to Evaluate Explosion Potential Completed Studies (cont)

Organics

- Evaluation conducted by PNL (1985)
 - Literature review of organic explosives (fulminates, lead azide, phenolic compounds, polynitrated organics, nitrate esters, black powder explosives) and one inorganic explosive (ammonium nitrate)
- Conclusion
 - Operating conditions (i.e., alkaline, high moisture, low temperature) do not allow the presence of these explosives in the tanks.

Studies to Evaluate Explosion Potential Studies in Progress

FeCN + NaNO₃ or NaNO₂ (22 tanks)

 Laboratory testing by PNL and Los Alamos National Laboratory (1988-1990)

7 1 1 2 1 5 3 1 7 1 1

Lowest reaction temperature observed (460 °F) is substantially higher than the maximum temperature measured in FeCN-containing tanks (134 °F)

Kyshtym Explosion History

Waste tank explosion occurred on September 29, 1957

- Contaminated large areas (primarily with ⁹⁰Sr)
 - >15,000 km² to >0.1 Ci/km² 1,000 km² to >2 Ci/km² 120 km² to >100 Ci/km²
- 10,000 people evacuated
- Confirmed by USSR
 - TASS, June 17, 1989
 - Technical report through the International Atomic Energy Agency, July 26, 1989

Kyshtym Explosion History(cont)

- First revealed by Medvedev, geneticist exiled in 1973
- Event analyzed by
 - Prof. Frank L. Parker, Vanderbilt University, in 1978
 - Oak Ridge National Laboratory in 1979
 - Los Alamos National Laboratory in 1982

Kyshtym Explosion

Evaluation

- Chemical Explosion
 - Nitrate-acetate most likely as mixed sodium saltcake

9112 3317 14

- Cake dried by radiolytic heating months after cooling water system failure
- Autoignition temperature ≥ 716 °F (i.e., decomposition of NaNO₃)
- Acetates probably introduced by chemical processing
- Cesium-rich supernatants apparently drawn off earlier

91120531705

Relevance of Kyshtym to Hanford Site SST Waste

Chemicals that could react are present in SST waste

- FeCN-NaNO₃
 - Lowest reaction temperature observed was 460 °F
 - FeCN tanks (22) are currently moist and cool (<135 °F)
- Organics NaNO₃
 - Autoignition temperature of NaNO₃ is 716 °F
 - Explosion potential low at organic concentration of <5% in NaNO₃
 - SSTs are currently moist and cool (<230 °F)

Summary and Conclusions

 Potential for chemical explosion in SSTs has been evaluated throughout the past 15 to 20 years

91127531335

- Explosion or rapid reactions from the types of chemicals present in SSTs, in general, require <u>both</u> specific chemical mixtures <u>and</u> high temperatures
- Chemicals that could react are present in tanks <u>but</u> <u>high temperatures are not present in tanks</u>
- Studies in progress to further evaluate FeCN will be completed in 1990